TRANSIENT EVAPORATION OF A SOLUTION
FROM A PLANE SURFACE

V. A. Mishagin ' UDC 536.423.1

The parabolic interpolation for the transient-state approximation is used in analyzing the
temperature field and the concentration field of a nonvolatile substance in solution as well
as the temperature field and the concentration field of the solvent vapor in the ambient
atmosphere, when evaporation is accompanied by a lowering of the liquid level,

Although the solution of problems in transient evaporation with a moving interphase boundary has
been the object of many studies [1-9], the nonlinearity of such problems still presents a serious obstacle
in the way of completely establishing the interrelations between all quantities involved,

We will attempt here to fill the gap as much as possible. Evaporation of a solution under certain
generally reasonable assumptions can be described by the following system of equations:
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Here the x axis runs into the liquid and the origin of coordinates has been fixed so that the evaporation sur-
face at the initial instant of time coincides with the x = 0 plane. While funections Ty(x, 7), T)(x, 7), C(x, 7),
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and u(x, 7) are unknown, ug is assumed a known function of two variables T;, C¢ and represents either

Raoult's Law when T, is fixed or the Clapeyron--Clausius relation when Cg is fixed. Equations (6)-(8) ex-

press the eonservation of the total heat content of solvent and solute.

We assume further that the thermal conductivities, the thermal diffusivities, and the molecular dif-

fusivities remain constant.

Differentiating (6)-(8) with respect to time, we obtain
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The unknowns will be sought in the transient-state parabolic approximation
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Here the four symbols with the subscript 6 represent the values of the sought functions at the respective
"depths of penetration®" é (particular for each function) [1] measured from the moving interphase boundary

. Both § and ¢ are functions of time or of quantities uniquely related to time, namely:
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and analogously for the other unknowns.

Inserting (12) into (6)-(8) and then integrating, we obtain
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Inserting (12) info (9)-(11) yields
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Instead of (1) and (2) we will solve the equations of "heat balance® 1]
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Expressing the left-hand sides in terms of the derivatives of the integral with respect to time T, and using
the approximations (12), we obtain instead of (20) and (21):

3 9a 3dT
din (T — T, )v 14+ S — 2 M inE = ——— 18 :
{Fe =T ]+( * v B ) : (Te—Ty) (22)
- 3 92, \ | 34T
dIn[(Tyy—T ] — 2 dint = w__
ni(fa— gw1+( o ) sy (23)
where, in order to simplify the notation, we introduce
&_ 2 =% -5 (23a)
= 3 , U= : , W= .
and
— _6.1_ N s:.ﬁ_zg . (23b)
3 3

In this case Eq. (14) becomes an identity and can be used either for verification or as an auxiliary equation.

1t should be noted (and remembered later on) that T,5 and 6, are directly related for each of the un-
known functions, By virtue of the limitation £ + 6; = h,, indeed, T, is equal to Ty if £ + 63 < h; but re-
mains unknown if £ + 05 =h,, i.e,, if 6; can be expressed in terms of {. As a consequence, we have four
characteristic instants of time corresponding to the roots of the equations

E(W)+6,(1) =hy,

& (1) + 8, (v) = Ay, (24)

E()—8, (1) = - ha,

E()—8,(v) = —hy
Relations (15)~(19), (22), (23) are sufficient for determining §, T¢, Cg, and the four (by virtue of the earlier
observation) unknowns for the sought functions. In this case the "heat balancen equations for C(x, 1) and
w(x, 7) become identities,

From (15) and (18) we have (remembering the earlier observation)
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The earlier observation applies also to Eqs. (22) and (23). For instance, at 7 =<7, (7, denoting the smal-
lest root of Eq. (24) and with
D2 (usv"_uo)2 — Dl (Cé — 60)2 — ﬂ, (29)
(p—ug)(p _u0> COC§
following from (25) and (27)), we note (since T,5 =T, and T,5 =T, ) that (22) and (23) are satisfied together
with (29) and (17) if v and w are constant and satisfy the equations
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i.e., selecting the roots which correspond to evaporation (other roots correspond to other phase transfor-

mations) yields
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and these two expressions inserted into (17) will add to system (29) that lacking equation
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for determining the quantities 3, Tg, and C £ found to be constant.

In this way, we find that at 0 < 7 =< 7, the quantities §;, 0,, &;, and §, are proportional to £ and thus
&y = &(1g)can be easily determined from Eqs, (24). Since function § yields 7 readily, hence 7; is determi-
nate,

It becomes obvious now that the solution is self-adjoint at ¢ <7 = 7, and it matches, within the proper
approximation, the solution for an unbounded liquid in an unbounded medium. At 7> 7, the solution is also
not an explicit function of time, which has to do with the conservation of total energy of the liquid and the
ambient medium.

NOTATION
X is the space coordinate;
T is the time;
¢ is the coordinate of the liquid surface;
ay, ay arethe thermal diffusivity of the liquid and the ambient medium respectively;
ky, ky are the thermal conductivity of the liquid and the ambient medium respectively;
Dy is the molecular diffusivity of solute in the solvent;
D, is the molecular diffusivity of solvent vapor in the ambient medium;
p is the density of the solvent;
L is the heat of evaporation of the solvent;
To Te is the initial temperature of the liquid and the medium respectively;
Cy is the initial concentration of solute in the solvent;
u is the initial concentration of solvent vapor in the ambient medium;
hy is the initial depth of liquid;
h, is the initial thickness of vapor-gas layer in the ambient medium;
T is the temperature of liquid surface;
Ce is the concentration of solute at the liquid surface;
04 is the "penetration depth" of solute concentration in the solvent;
8y is the "penetration depth" of solvent vapor concentration in the ambient medium;
63 is the "penetration depth* of temperature in the liquid;
6y is the "penetration depth" of temperature in the ambient medium;
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Cs is the concentration of solute beyond its penetration depth;

ug is the concentration of solvent vapor beyond its penetration depth;

Tys is the temperature in the liquid beyond the penetration depth;

Tys is the temperature in the ambient medium beyond the penetration depth;

ug(T;, C g) =ug is the concentration of saturated solvent vapor (known function of T, and C 3 which are

unknown functions of time or of a guantity uniquely related to it).
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